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Cylindrical Approximation of Constrained 
Chain Model for Rubber Elasticity. 1. 
Constant Volume Deformations 

A. H. CROSSLAND* and B. M. E. VAN DER HOFF 

Department of Chemical Engineering 
University of Waterloo 
Waterloo, Ontario, Canada 

A B S T R A C T  

This paper reports a new model for rubber elasticity based 
on the geometric constraints imposed on a network chain and 
the chain segments by the crosslinks a t  each end. Through 
consideration of these constraints, the number of conforma- 
tions available to a network chain can be calculated directly 
assuming the chain is on a lattice. By simplifying the model 
and by assuming affine deformation, the rigorous equations 
for the conformational entropy are reduced to an analytic ex- 
pression for the strain-energy function. From this function, 
equations describing extension, compression and pure shear 
are derived. The model is tested against literature data for  
natural rubber and polybutadiene and is found to reproduce 
quantitatively all the salient features of the experimental 
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82 6 CROSSLAND AND VAN DER HOFF 

stress-strain curves in the three modes of deformation. It 
is shown that the decrease in the Gaussian modulus with 
extension, often characterized by the CZ term in the Mooney- 
Rivlin theory, arises naturally from the conformational entropy 
of a network chain, and special effects such as  structure, 
topology, etc., need not be invoked to explain this phenomenon. 
The theory also predicts the near-constant modulus of extended 
highly swollen gels, an effect often considered as verification 
of Gaussian theory. 

INTRODUCTION 

There have been many attempts to describe the mechanics of 
elastomers using statistical thermodynamics. The most generally 
accepted formulation is the one based on the Gaussian distribution 
and has been derived in different ways by several authors [ 1-61. 
Although there is disagreement in the method of derivation, there is 
general agreement on the final result, all theories predicting the 
same dependence of stress on strain. This Gaussian theory, how- 
ever, agrees rather poorly with experiment and the rationalization 
of this deviation has dominated the literature for over two decades. 
Attempts to explain the observed departures from theory in terms 
of intramolecular energy effects, orientationally active short chains, 
excluded volume effects, entanglements and structuring in the network 
have been reviewed by Dusek and Prins [ 71. These authors observe 
that the attempted corrections fall into two categories, those which 
predict only a small correction to the Gaussian theory and those 
explanations which are incomplete or qualitat ive. They conclude, 
"There is at the moment no quantitative theory to account for the 
behavior . . . 'I. Since none of the theories can account for all of the 
salient features of elastic stress-strain behavior, there is a real 
need for new interpretations. As Flory states [ 81, "A truly original 
viewpoint is needed and novel methods probably as well". 

In this paper, a new model for a single network chain is presented 
which leads to new methods for calculating conformational chain 
entropies. Because a network chain is fixed a t  both ends by cross- 
links, the geometry of the system imposes constraints which invalidate 
the "random walk" assumption implicit in the Gaussian theories. In 
contrast, the new model utilizes these constraints as a basis for deriv- 
ing a strain-energy function which is used to predict the stress-strain 
properties of both dry and swollen rubbers in the constant volume 
deformations of extension, compression, and pure shear. 
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CONSTRAINED CHAIN MODEL. I 827 

T H E O R Y  

M o d e l  of t h e  N e t w o r k  C h a i n  

Consider a network chain of contour length, C, composed of n 
segments, each of molecular weight Ms and of length L The end- 
points of the chain, which a re  connected into the network by crosslinks, 
are separated by distance L. For constant volume deformations, it 
can be assumed that the fluctuations of the endpoints a re  not a func- 
tion of strain, The endpoint8 then can be considered as being fixed 
at  their average position in space. This is consistent with the work of 
Hermans [ 91 and Flory [ lo], in whose theories the term accounting 
for endpoint fluctuation disappears for constant volume deformations. 
With the endpoints fixed, then all the segments of the chain are con- 
fined within a prolate ellipsoid as is shown in Fig. 1. This ellipsoid 
represents the total volume in which there exists a probability of 
finding a segment of the chain. It should be noted that the volumes 
available to neighbouring chains overlap to a considerable degree. 

Just as the entire chain is constrained within a specific volume, 
each segment of the chain is confined within its own unique volume 
element. These volume elements are defined by the volumes of the 
spherical segments described when the chain is alternately pulled 
tight from opposite directions as is illustrated in Fig, 2. Further- 
more, the sizes of these volume elements are a strong function of 
the end-to-end distance of the chain. Increasing the end-to-end dis- 
tance reduces the volume available per segment, as can be seen by 
comparing Figs. 2a and 2b. 

the compression of an ideal gas and the extension of an elastomer. 

9' 

This model illustrates the strong similarity which exists between 

FIG. 1. Network chain constrained within a prolate ellipsoid. 
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828 CROSSLAND AND VAN DER HOFF 

FIG, 2. Loss in available volume per segment as chain endpoints 
are extended (a) undeformed chain; (b) extended chain, 

Since under moderate deformation elastomers are largely incompres- 
sible, the loss in volume available per segment, as illustrated in Fig. 2, 
is performed with essentially no change in interatomic distances and 
hence, no change in interatomic forces. These are exactly the condi- 
tions assumed in the compression of an ideal gas, a loss in volume 
with no change in interparticle energy. It is reasonable to expect 
then, that the equation relating the loss in entropy of a chain segment 
during elongation may have a resemblance to the ideal gas law. 

C o n f o r m a t i o n a l  E n t r o p i e s  

The calculation of the number of conformations available to a 
specific network chain with end-to-end distance L must be performed 
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CONSTRAINED CHAIN MODEL. I 829 

while maintaining the criteria of constrained volume and connected 
segments. A standard technique for this type of calculation is to 
place the chain on a lattice. Here, the lattice co-ordination number 
is taken for convenience to be zo + 1. Then, for a random chain of n 
links, with one end fixed a t  a lattice point, the number of possible 
configurations a, is given by 

n -  1 n =zo 

where zo represents the number of alternatives available for each suc- 
cessive random step. Since a real network chain is constrained by 
inviolate surfaces, its number of alternatives a t  each successive step 
z, must be less than 20. The value of z for each link of the constrained 
chain can be calculated from considerations of the model just developed. 

criterion must be observed: the step must originate within the i-th 
volume element and terminate within the (i + 1)th volume element. 
With this in mind, consider the cross  sections of the volume elements 
of the i-th and the (i + 1)th chain segments as is shown in Fig. 3. 

In stepping from the i-th to the (i + 1)th segment, the following 

FIG. 3. Cross sections of i-th and (i + 1)th segment volume 
elements. 
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830 CROSSLAND AND VAN DER HOFF 

The i-th volume element Vi can be divided into three subelements 
based on the degree of constraint imposed on the number of available 
alternatives in these locations. These subelements are designated 
Vil, Via, vis in Fig. 3. 

If the i-th segment lies in the volume subelement denoted in 
Fig. 3 by V , it can step one segment length Ps in any direction and 
still remain in the volume element of the (i + 1)th segment. In this 
case, z would have the value of the random chain, 20. If the i-th 
segment happens to lie on the surface denoted by SI, z must have the 
value of unity because there exists only one possibility for the next 
step to fall within Vi + 1, namely a step directly normal to S1. Another 
possibility is that the i-th segment is found on the surface Sa . In 
this case, z would have the value of approximately z0/2 because 
effectively one half the volume surrounding this lattice point is avail- 
able for the next step. The value of z for the volume subelements 
designated V and V can be taken as the averages of the values 

ia  is 
a t  their surfaces. 

ForV : 

il 

ia 

For Vt: 

The overall average value of z for the step from the i-th to the 
(i + 1)th segment is the volume average of the values of z for each 
subelement. 

(4) 

By using Eq. (4), a value of z can be assigned to each step for the 
n links of the network chain and the total number of configurations 
can be computed from 
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CONSTRAINED CHAIN MODEL. I 83 1 

n -  
i a =  r l z  

i=1 

and the conformational entropy change upon deformation follows 
directly from Boltzmann's Law 

AS = k In ( 5 2 / f & )  

n 
= k  In (ii/ii,) 

i = l  

(5) 

Here S Z O  and zi are the values determined a t  some initial end- to- 

It should be noted that this method of calculation does not exclude 
end distance b. 

those impossible conformations where two segments of the same 
chain occupy the same lattice point. The principal effect of these 
excluded conformations is to extend the initial end- to-end distance. 
This effect is not a serious limitation to the method presented here, 
because the initial end- to-end distances are determined empirically, 
as wil l  be shown later. 

It would seem that by using Eqs. (4), (5) and (6) in combination 
with classical network theories, there exists a straightforward rodte 
to the mathematical description of the mechanical behavior of elas- 
tomers. This method, which is fraught with mathematical difficulties, 
will be the subject of a subsequent publication. The remainder of 
this paper is devoted to the reduction of the constrained chain model 
to analytical expressions through simplification of the model. 

A p p r o x i m a t i o n  f o r  C a l c u l a t i n g  C o n f o r m a t i o n s  

The convenience of a single analytical formula may sometimes 
outweigh the loss in rigour when an expression, calculable only by 
numerical methods, is simplified by approxhgtion. The f i rs t  approx- 
imation required is a simpler expreseion for z. as given by Eq. (4). 

This parameter is a function of the volume available to the i-th seg- 
ment and as such, is also a function of both the end- to-end distance 
of the chain and the extension ratio of-the bulk material. A simple 
relationship is required to represent zi over the practical range of 
strain ratios. 
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832 CROSSLAND AND VAN DER HOFF 

The required relationship was determined by inspection. Values 
of the ratio zi/zi were plotted versus the ratio Vi/Vb. The result- 
ing curves were convex, commencing at the origin and terminating 
at  the point (1,l). The simplest function which reproduces this 
behavior is given by 

- An example of the degree of fit is given in Fig. 4. The values of 
zi were calculated from Eq. (4) for a typical segment of a chain of 
36 segments, each of unit length. The value of zo was taken to be 5 
and the initial end-to-end distance to be 6. Choosing the contour 
length to be the square of the initial end-to-end distance makes the 
chain Gaussian, a basis which is used for want of an alternative. The 
value for zo is in the range found experimentally [ 111 in solution 
thermodynamics. However, it was found that changing zo by several 
multiples did not significantly affect the results. Of interest is the 
fact that over practically the entire range of Vi/Vb, zi/zio can be 

well represented by the function given by Eq. (7). In Fig. 4, the curve 
is drawn with 

y = 14 
4 

From Eq. (7), the 
mation is given by 

entropy change for the i-th segment upon defor- 

J/Y 

This last expression differs from the ideal gas law only by the factor 
l/y. This similarity, between Eq. (8) and the ideal gas law, is to be 
expected owing to the similarity between the compression of an ideal 
gas and the effect of extension on a segment of an elastomeric chain, 
as was pointed out previously. 
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CONSTRAINED CHAIN MODEL. I 833 

1.0 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

0 

0 0 . 2  0 . 4  0.6 0.8 1.0 

FIG. 4. Normalized number of alternatives versus segment 
volume for a typical segment of a Gaussian chain of 36 segments: 
(-) exact calculation, Eq. (4) ( -  -) approximation, Eq. (7). 

C y l i n d r i c a l  A p p r o x i m a t i o n  of a N e t w o r k  C h a i n  

In the second approximation required to achieve an analytical 
expression, the prolate ellipsoid of Fig. 1 is replaced by a cylinder 
of diameter D. Consider again the volume available to the i-th 
segment of the chain. If the chain is pulled tight along the axis 
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834 CROSSLAND AND VAN DER HOFF 

0 0 )  0. 

I 

I 
I I 
i 
I ! 

I 
I 
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I I 

FIG. 5. Cylindrical model for approximate calculation of volume 
available for a segment. 

joining the endpoints from the right, the i-th segment wil l  lie a t  a 
distance iQ from the left-hand endpoint as is shown in Fig. 5a. Simi- 
larly, if the chain is pulled tight from the other end, as in Fig. 5b, the 
i-th segment will lie a t  a distance q = L - (C - iQ 8 )  from the left-hand 
endpoint. The volume available to the segment is then approximately 
(neglecting the curvature at each end) 

= (n/4) D2 (C - L) (9) 

It is obvious that the volumes available to segments of the chain 
close to the crosslink points will not be given by Eq. (9). For long 
chains, however, these end-effects will be relatively insignificant. 

dimensions (affine deformation), the strain ratio can be written 
When the chain is deformed in the same ratio as the macroscopic 

x = L / b  (10) 
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CONSTRAINED CHAIN MODEL. I a3 5 

Also, because the volume of an elastomer remains essentially 
constant during deformation, the diameters of the cylinder after and 
before deformation are related by 

The ratio of the volume available to the i-th segment after and 
before deformation can then be calculated 

vi 

CL-ILO- b 

C - L O  
- - 

The ratio C / b ,  which is given by the maximum extensibility of the 
chain? is of special significance to this theory and will be designated 
henceforth by A. Equation (12) can now be written 

Combining Eqs. (6), (7), and (13) yields the change in entropy for the 
chain upon deformation 

n 

i = l  
AS = k In (viDb)”’ 

The network response to a s t ress  involves contributions not only 
from chains whose axes are oriented in the direction of stress, but 
in other directions as well. The change in entropy for an average 
chain in the network will be the average of the contributions in the 
three coordinate directions. 
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836 CROSSLAND AND VAN DER HOFF 

nk 

3 Y  
AS =- [In(CL-' - 1) + In(CL-' - 1) + In(C1,' - 1) - 3 h ( A  - l)] (15) 

X Y 

This expression represents the stored entropy function for an 
average network chain in a constant volume deformation. 

A v e r a g e  I n i t i a l  Cross S e c t i o n  of a N e t w o r k  C h a i n  

Before the stored entropy function can be related to experimental 
quantities, it is necessary to calculate the contribution of an average 
chain to the initial cross section of the bulk material. To calculate 
this quantity on a statistical basis without specific information about 
the chain is a fruitless, if not an impossible, task. Instead, the 
following approach has been adopted. 

between the maximum and minimum possible contributions and, 
hence, can be represented by a weighted average of the extremes. 

If we assume the stress is acting in the X-direction, then the 
average number of times the chains in each of the three coordinate 
directions cross the arbitrary Y- Z plane must be found. The confor- 
mations giving the minimum number of crossings are  illustrated in 
Fig. 6A. The chain on the X-axis crosses once, while the chains 
along the other axes cross twice. The average cross section of a 
single chain a, is given by the volume of the chain divided by its 
contour length. 

The true average contribution to the cross section must lie in 

a = Mc/pC 

where p is the density of the polymer and Mc is the molecular weight 
of the chain between adjacent crosslinks. For the uncoiled chains in 
Fig. 6A, then, the contributions of the chains in the X and Y or Z 
directions are a and 2a, respectively. 

chains are tightly packed into regular volumes, each of length Lo. 
In this conformation, these chains have a far greater contribution to 
the average cross section. The cross- sectional contribution along 
the X-axis Ax' is given by 

At the other extreme, schematically represented in Fig. 6B, the 

Ax = Mc/pL,, = McA/pC = Aa ( 17) 
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Y Y 
" '4 

Lo-' 

i X 

Z z 

A. 8. 

- X  

Z' / 
z 

A. 8. 

FIG. 6. Conformations of chains giving (A) minimum contributions 
and (B) maximum contribution to cross section. 

For the tightly packed chains on the other two axes, the cross  
sections are given by 

The true average contribution to the cross section wil l  not be 
either of the two extremes, but somewhere in between, probably 
closer to the minimum for a low density, amorphous elastomer. For 
this reason, the true average contribution will be assumed to be the 
weighted average of the two extremes with the minimum weighted by 
a factor w. The average contributions to the cross sections are then 
given by 

- 
Ax = [ l/(w + 113 (Aa + wa) 

=[a / (w +1)] ( A  + w )  (19) 
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838 CROSSLAND AND VAN DER HOFF 

= [ l/(w + l ) ]  (b A"2a1'2 + 2wa) 

The overall average now becomes 

1 j 2  1 / 2  a(A + w) 2 ( b  A a + 2wa) 
+ =[ w + l  w + 1  

which after substitution for a and simplification, becomes 

If the chain has x monomer units, each of length P,, a structural 
parameter 6, can be defined by 

p = Q m a  =(pp3 /M 
m m  

where Mm is the molecular weight of a monomer unit. For any par- 
ticular elastomer, p can be evaluated from knowledge of the chemical 
composition and the bond angles and lengths in the polymer backbone. 
Equation (22) can now be rewritten into the desired form: 

U n i a x i a l  D e f o r m a t i o n  

pression are essentially constant volume processes. Taking the X- 
axis as the direction of stress, then the strain ratios are related by 

For an elastomer, the uniaxial deformations of extension or  com- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
2
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CONSTRAINED CHAIN MODEL, I 839 

and since affine deformation has been assumed, the end-to-end dis- 
tances of the chains are related by 

The stored entropy function, Eq (15) can now be written in terms 
of Lx, which yields 

nk 

3Y 
AS =- [Ln(CL-' X - 1) + 2 ( C ~ s ' 2 L x i ' 2  - 1 ) -  3 In(A -l)] (27) 

and the tension along the X-axis is given by 

The s t ress  per unit of undeformed cross  section can be found by 
dividing Eq. (29) by Eq. ( 24) 

7 = f / x  

AX - h2 Ah - ' I  A l l 2  
=';.- -[ I - 

where 
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840 CROSSLAND AND VAN DER HOFF 

P ( W  + I)A'RT 
I a =  

yM (A + 5~ + ~ X P A - ' ' ~ )  
S 

The parameter E ,  which is introduced for convenience of notation, 
contains no strain-dependent variables and is a constant for any par- 

. ticular vulcanizate. According to the constrained chain model, then, 
the stress-strain properties of any particular vulcanizate can be 
represented by only two empirical parameters: A and E . 

P u r e  S h e a r  

For an incompressible elastomer subjected to pure shear by a 
stress acting along the X-axis, the strain ratios a re  related by 

x = 1  
Z 

and again assuming affine deformation, the end-to-end distances are 
related by 

L = L~L-' 
Y X 

and 

Lz = Lo (33) 

For this mode of deformation, the stored entropy function can be 

AS = -  [ In(CL;' - 1) + In(CL;' Lx - 1) - 2In(A - I)] 

written as 
nk 

3r 
(34) 

and the tension in the X-direction is found by using Eq. (28). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
2
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CONSTRAINED CHAIN MODEL. I 841 

nAkT 1 
I (35) 

The s t ress  per unit of undeformed cross  section is  then given by 

7 = f/A 
1 

AX - h2 Ah - 1 

where all symbols retain their previous significance. 

U n i a x i a l  D e f o r m a t i o n  of S w o l l e n  E l a s t o m e r s  

For an elastomer, swollen to volume fraction of polymer vz , the 
s t ress  per unit of swollen undeformed cross  section 7 is determined 

simply by substituting the swollen equivalent of A 
S 

into Eqs. (30) and (31) and by accounting for the presence of solvent 
in the initial cross section. 

f S 
T =  

s -  ASvz-' l 3  

where 
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In Eq. (38), X represents the ratio of the extended swollen length to 
the initial swollen length. 

ties of an elastomer are  given by expressions with essentially four 
parameters. The first parameter, A, defines the ratio of the contour 
length to the initial end-bend distance and, hence, establishes the 
maximum extensibility of the chain. The second parameter, x, 
which gives the number of monomer units, describes the size of the 
chain. The quantity yMs, which can be treated as a single parameter, 
hereafter called 5 ,  reflects the flexibility of the chain. The fourth 
parameter is w, the weighting factor from the cross-sectional cal- 
culation, which effectively describes the packing of the chain, It is 
believed that the properties of a specific chain cannot be described 
with fewer parameters unless some assumption is made concerning 
the relationship between these parameters. For example, in the case 
of a Gaussian chain, the A, x, and Ms parameters are  related by 

In the Eqs. (30)-(39), the extension, compression, or shear proper- 

No such relationship is assumed here because it leads to a loss of 
generality. 

APPLICATION OF THEORY TO EXPERIMENT 

U n i a x i a l  D e f o r m a t i o n  

The extension data of Mullins (12) were chosen to establish the 
parameters in the model for three reasons. First, the experimental 
stress- strain relationships of elastomers in extension have unique 
characteristics which make the selection of the parameters easier. 
Secondly, in the material used by Mullins, natural rubber + dicumyl 
peroxide (DCP), quantitative rdlationships between the amount of 
crosslinking agent present and the number of crosslinks formed are 
generally assumed [ 13- 151. Finally, the experimental data cover 
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the full range of extension to rupture and it can be determined if the 
model is specific to a limited range of strain or  generally applicable. 

The theoretical relationship, Eq. (30), was fitted to the data by 
optimizing the Aand E parameters to give the best least-squares 
fit for each vulcanizate. After some experience had been gained with 
the model, it was found that initial estimates of A could be obtained 
from the position of the minimum in the experimental Mooney- 
Rivlin plot. 

tion data in which the Gaussian modulus 
A Mooney-Rivlin plot is a method of presenting uniaxial deforma- 

is plotted versus A-'. Mullins' extension data and the fitted theoreti- 
cal curves a re  presented in this manner in Fig. 7. The agreement 
between theory and experiment is excellent, the new model repre- 
senting a large improvement over the Gaussian theory which predicts 
a horizontal straight line on this type of plot. The single formula, 
Eq. (30), predicts not only the decrease in the Gaussian modulus a t  
low to moderate strains, but also the rapid increase a t  high exten- 
sions. It can now be seen that the decrease in the Gaussian modulus 
with extension, frequently characterized by the second invariant of 
the Mooney-Rivlin theory, arises naturally from the conformational 
entropy of a network chain and special effects such as topology, order, 
entanglement, etc. need not be invoked to explain this phenomenon. 

At the highest crosslink density, the fit of theory to experiment 
is not as good. This effect, anticipated in the theoretical section, is 
attributed to the larger relative significance of end-effects in short 
chains. 

To compare theoretical values of the number of monomer units per 
chain x, with estimates based on the concentration of DCP, it is nec- 
essary to establish the parameters 5 and w for natural rubber. Since 
this was done through an optimization procedure involving use of 
other sets  of results besides the extension data of Mullins, the results 
of that procedure, 5 = 160 and w = 2 will be utilized now and justified 
later. With the parameters A and E established for each vulcanizate 
from the stress-strain curve fitting, values of x were calculated 
from Eq. (31). Chemical estimates of the number of monomer units 
per chain x were obtained by using Eq. (42): 

C' 

1 moles of monomer units 

2 moles of DCP 
x = - (  

C 
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8 . 0  

6 .0 

= u  

kg/cm2 

4 .O  

2.0 

\ 

0.2  0 .4  0 .6 0 . 8  1.0 

A-' 
FIG. '7. Mullins' extension data [ 121 for natural rubber and fitted 

theoretical curves from Eq. (30): ( A  ) A  = 9.18, Z = 315.4 kg/cm2 ; 
(0 ) A = 7.80, Z = 330.3 kg/cm2 ; ( v ) A = 5.70, ," = 243.1 kg/cm2 ; 
( 0  ) A = 5.25, E = 215.2 kg/cm2;(0) A = 4.50, 8 = 1'74.8 kg/cm2. 
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200 

150 

X 

100 

50 

10 20 3.0 4.0 5.0 

PPH DCP 
FIG. 8. Monomer units per chain as a function of DCP concentra- 

tion for Mullins' extension data [ 121 : (-) chemical estimate, 
Eq. (42); ( 0) from extension data, Eq. (31). 
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846 CROSSLAND AND VAN DER HOFF 

The resulting values of x and xc are  plotted together in Fig. 8. Again 

the agreement is good, the average deviation being less than 9%. 
To illustrate that the constrained chain model is applicable to 

more than one type of elastomer, Eq. (30) was fitted to the data of 
van der Hoff and Buckler [ 161 for polybutadiene networks in exten- 
sion. The extremely high degree of fit for these data, shown in Fig. 9, 

8.0 - 

7.0 - 

N 

5 
6.0 - 

h v x 
1 5Q- < c, 

4.0 - 

3.0 - 

0.2 0.4 0.6 0.8 1.0 0 

X' 

FIG. 9. Data of van der Hoff and Buckler [ 161 for polybutadiene 
networks in extension and fitted curves from Eq. (30): (A) A = 9.5, 
Z = 1145.5 kg/cma; (B) A = 11.8, 2 = 1571.5 kg/cma; (C) A -  13.7, 
E = 1625.5 kg/cma . 
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is probably due to both the large values of A, which minimize the end- 
effects, and the experimental technique, which minimizes viscoelastic 
effects. 

Uniaxial deformation can be either extension or compression and 
Eq. (30) should apply in both cases. In Fig. 10, Eq. (30) is fitted to 
Ang’s data [ 171 for DCP-cured natural rubber in compression. Be- 
cause the compression curves are  relatively featureless, there is no 
method for finding an initial estimate of A from the experimental 
data. Therefore, in this case, A values were assigned by interpola- 
tion of the experimental values of the initial modulus of Mullins ’ 
extension data. The values 5 = 160 and w = 2 were used as before, 
and the values of x were adjusted to give the fit. As  with the exten- 
sion data, the f i t  a t  low degrees of crosslinking is excellent. The 
single formula, Eq. (30), which reproduced the complex behavior of 
the extension curves, also describes the relatively constant moduli 
in compression. Because it seems unlikely that the introduction of 
extra crosslinks could drastically affect the shapes of the curves, 
the deviations which occur a t  high crosslink densities are attributed 
to experimental scatter in this instance. 

P u r e  S h e a r  

If Eq. (15) truly represents a strain-energy function, it should 
serve to describe behavior in more than one type of deformation. 
In Fig. 11, experimental values of the Gaussian modulus in pure 
shear, 

G = 7 / ( X - h - ’ )  
PS (43) 

and the fitted theoretical curve from Eq. (36) are plotted versus strain 
ratio. The experimental data a re  from Treloar [ 181. Again, the fit 
is excellent, the theoretical curve quantitatively reproducing all the 
features of the experimental curve. 

The material used for this experiment was from a sulfur-cured 
natural rubber network and the parameters used to fit the data are 
not necessarily comparable with those of a peroxide-cured network. 
The wandering of sulfur crosslinks during deformation may give this 
type of material a larger extensibility than a network crosslinked to 
the same degree with peroxide, This larger extensibility may result 
in an artificially large value of A. In this case, however, the move- 
ment of crosslink points does not seem to affect the results. Assum- 
ing the same values of 5 and w as used previously, the number of 
monomer units per chain was found to be 84, which is the value ex- 
pected for a peroxide-cured network with the same initial modulus. 
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E x t e n s i o n  of Swol l en  E l a s t o m e r s  

The final and most critical test of the new theory is in the predic- 
tion of the extension properties of vulcanizates swollen to various 
degrees. Mullins’ data [ 121 were used for the same reasons as 
mentioned previously. Mullins reports extension data for both the 
dry rubber and its gel swollen to four concentrations of solvent, The 
severity of this test can be appreciated when it is considered that once 
the values of w, A, x, and 5 are established for the dry rubber, four 
other sets of data must be predicted simultaneously without any adjust- 
able parameters. 

For the dry rubber, the curve was fitted by assigning x the value 
x calculated from the amount of crosslinking agent by Eq. (42), on 
assigning A the value dictated by the minimum in the Mooney-Rivlin 
curve, setting w = 2 as before, and adjusting 5 to give the fit. With 
these data, 5 was found to be 150, which is reasonably close to the 
value 160 used previously. Once these values had been established, 
the theoretical curves for the swollen systems were calculated by 
using Eq. (38). 

swollen gels are given in Fig. 12. The agreement between theory 
and experiment is reasonably good. Of significant interest is the 
fact that at high degrees of swelling, the rate of decrease of the 
modulus with extension is very small, This near constancy of the 
modulus was once taken as verification of the Gaussian theory, This 
phenomenon can now be seen to be a special case within the frame- 
work of the theory presented here. 

Not only are the slopes of the experimental curves well repro- 
duced, but also the absolute value of the moduli. This is particularly 
gratifying because the moduli are a strong function of the E s  param- 
eter and, hence, of the method used to calculate the contribution of 
the average chain to the initial cross section. The agreement between 
theory and experiment is a strong validation of the methodology 
adopted. 

large extensions of the highly swollen gels. This deviation is prin- 
cipally attributed to the failure of the approximation (Vi/Via 1’’’ to 
represent z /z at high degrees of strain (and hence small values of 
Vi/Vi,) as can be seen in Fig. 4. 

C’ 

The experimental data and the theoretical curves for both dry and 

The only significant deviation of experiment from theory occurs at  

i i a  
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FIG. 12. Mullins' extension data [ 121 for a natural rubber vul- 
canizate swollen to various degrees and fitted theoretical curves from 
Eq. (39), A = 5.248, x = 66, .$ = 150: 
( v ) V 2  = 0.585; (0) V2 = 0.455; ( A ) Vz = 0.40'7. 

(0) vz = 1.0; (0) vz = 0.753; 
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J u s t i f i c a t i o n  of Mode l  P a r a m e t e r  s 

Now that all the sets of data used to test the model have been pre- 
sented, the method used to establish the parameters in the model can 
be discussed. The following procedure was used. 

An arbitrary value was selected for w and then the value of 5 which 
gave the smallest average deviation of x from x in Fig. 8 was deter- 
mined. Using these values of w and 6, the degree of fit of Eq. (38) to 
the swollen stress-strain data was then assessed. This process was 
repeated for a number of values of w. The effect of changing the 
weight factor was manifested in a number of ways. First, and most 
important, was the effect on 5 .  For example, if w was assigned the 
value of unity, 5 would be 107. However, using such small values for 
w and 6 would worsen the fit of x to xc in Fig. 8. In the other direc- 
tion, increasing the value of w would increase t ,  but the fit of theory 
to the extension data for swollen gels would deteriorate. The value 
of w = 2 gives an excellent fit to both sets of data. 

Neither of the parameters 5 or w are  susceptible to direct observa- 
tion under the condition of constant volume deformation. This 
limitation wil l  be removed in Part  11 of this series, where nonconstant 
volume deformations are  considered. It will be shown that the flexi- 
bility parameter 5 ,  can be determined directly from experimental 
data and the value so obtained for natural rubber completely corrobo- 
rates the value obtained in this paper by optimization. 

C 

This discussion points out a limitation of the data presented here. 

CONCLUSIONS 

Any theory, no matter how cleverly conceived or rigorously de- 
rived, must, in the final analysis, be tested in the harsh light of 
experiment evidence. In the present case, this has been done with 
a fair degree of rigor, and no contradictions to the proposed theory 
have been found. The quantitative agreement between theory and 
experiment in the wide variety of strains illustrated here is the 
strongest possible validation of the novel concepts contained in the 
constrained chain model, It is concluded that the theory presented 
here forms a strong link between the visible, observed mechanical 
properties and the invisible microstructure of elastomeric networks. 
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